In this tutorial, we will discuss 5 best practices by which you can make your Microservice architecture developer friendly so they can manage and track the error easily.

  1. User Agent : It is very important to provide a meaningful name in request header so if any problem like slowness, huge memory access, spike etc occurs developers can understand from which microservice this request is originated. It is the best practice to provide the logical name/{service id } in the User-Agent property in the Request header.
Ex : User-Agent:EmployeeSearchService

  1. API Version Control :  In REST based Microservices architecture, One Microservice access another Microservices resources via API. So API acts as a Facade to other Microservices. The utmost important part is — written API in a judicious way so that API is not changed frequently because other Microservices consume the same so any changes in the API method signature is breaking other codes, but the Irony is Change is inevitable as we don’t know the future so today’s business strategy may become old in a few days so API must be revamped. As an architect the main challenge is how to cope with these changes, Answer is maintaining the Version, For a major changes you can update the API version and provide notice to your consumers that new Version is arrived so please migrate to the new version within a defined timeframe — In this time frame as an API provider you have to maintain both versions and constantly send high important notice to your consumer to migrate there codebase call to new version and after that period you can decommission your old version.
 Ex migrated to      

  1. Correlate ID :We know that  a business functionality in a MIcroservice architecture is distributed over multiple microservices, So one request from a client internally fans out to many separate requests  and it is highly probable that one of the services is slow or down, But as a developer how to track which service is slow in the Microservice forest, So  somehow we need to group the requests logically. So it is always a good practice to generate a Random UUID for a client request and pass that UUID to every internal request so in a log we can track by the UUID and find the call trace accordingly.

  1. ELK Implementation : Microservice is meant for autoscaling, so in a complex business domain it is very hard to manage Log files for Microservices, say In a system there are 50 microservices involved and each has 10 instances so there will be 50*10=500 logs file will be generated so as a developer it is not possible to log into each instance and collect logs for investigate an Issue. So we need a Centralized mechanism where all logs are dumped and we can do some intelligent search over that log like find out Error or a particular exception or search by the host, correlate ID etc. ELK provide the same where E stands for ElasticSearch L is Logstash and K is Kibana. ElasticSearch dumps the logs and provide a fuzzy search capability Logstash used for collect logs from different sources and transform it. Kibana is a Graphical User Interface where a developer can search the logs as there need. Alternatively, you can use Splunk or any other opensource framework for centralizinig and analysis the log .

  1. Resiliency Implementation : As I said earlier in a Microservice architecture — many microservices are involved to complete a business functionality. So it is very common that one of the services is not responding which will stop the whole flow to handle such scenario Resiliency is utmost important and each and every service should implement resiliency to provide a seamless experience to the end user.When a service is not responding a certain amount of time there should be a fallback path so user are not wait for the response but immediately notified about the internal problem with a default response. It is the essence of a responsive design.
Conclusion: when building a REST-based Microservices think about two perspective
1. User experience
2. Developer perspective.
A User does not like to wait and S/he needs a clear nontechnical message what is going wrong if there is an internal problem occurs so S/he can communicate with help desk properly. On another hand when it’s time for support the microservice we need the all important information in the log as the incident is already happened and based on the log we are analyzing it. So always think about support perspective while developing a Microservice so you can track a flow and get sufficient information from a log.

Source link

5 Best Practices for REST based MIcroservice

Leave a Reply

Your email address will not be published. Required fields are marked *